EL304. Commercial Dishwasher Detergents [EL304-2000/6/2008-213]

1. Scope

The criteria shall apply to commercial dishwasher detergents.

2. Definition

2.1

"Functional unit" refers to the quantification of the same services (performances) provided by a product. In this standard, the lowest value (the maximum dilution ratio) of the amount of detergent (dilution ratio) indicated on the product's packaging material is applied on the basis of the amount of detergent [g] to be used after being diluted in 100 L water. Note) Functional unit [g] = the ratio of diluted detergent [weight %] × 1000

2.2

"Commercial dishwashers" refers to a type of dishwasher mainly used in large-sized food service locations and where dishes and eating utensils can be continuously loaded during every stage of use, including washing, rinsing, and drying.

2.3

"Total Chemical Substances" refers to the total sum [g/wash] of the amount used for all the structure materials except for moisture (including bound water) out of the function units.

2.4

"Aerobic Non-biodegradation Material" refers to the total sum [g/wash] of the amount used for all the structure materials to which biodegradation shall not be applied under an aerobic state out of function units.

2.5

"Anaerobic Non-biodegradation Material" refers to the total sum [g/wash] of the amount used for all the structure materials to which biodegradation shall not be applied under an anaerobic state out of function units.

2.6

"Critical Dilution Volume Toxicity (CDVtox)" refers to the total value [L/wash] obtained by

measuring in terms of the quantity of water capable of diluting toxicity contained in a relevant ingredient for each structure material out of function units up to an acceptable level in an environmental aspect.

3. Certification Criteria

3.1 Environmental Criteria

3.1.1

With respect to the use of chemical substances in the manufacturing steps, the product shall not contain the following substances.

3.1.1.1

Alkylphenol ethoxylates(APEOs) and alkyl phenol derivatives

3.1.1.2

Chemicals belonging to the following H code class according to the UN Globally Harmonized System of Classification and Labeling of Chemicals should not be used.

Note: EU Regulation (EC) No. 1272/2008 Annex VI Part 3, (Harmonized Classification and Labeling Tables) will be tentatively applied to the material list.

- H 340 : may cause genetic defects
- H 341 : suspected of causing genetic defects
- H 350 : may cause cancer
- H 351 : suspected of causing cancer
- H 350i : may cause cancer by inhalation
- H 360D : may damage the unborn child
- H 361d : suspected of damaging the unborn child
- H 360F : may damage fertility
- H 360Fd : may damage fertility. Suspected of damaging the unborn child
- H 361f : suspected of damaging fertility

3.1.1.3

Use of the material over the limiting concentration, which must display the H code on the product according to EU Directives 1999/45/EC and UN GHS (Globally Harmonized System).

H Code	Description	Maximum Density [weight%]
H 400	very toxic to aquatic life	0.25

H 410	very toxic to aquatic life with long-lasting effects	0.25
H 411	toxic to aquatic life with long-lasting effects	2.5
H 412	harmful to aquatic life with long-lasting effects	25

Note) Product consisting of the chemical active contents, excluding moisture, is applied at concentration.

3.1.2

In the phase of use, in regard to emission of water pollution substances, the total sum and the value for each criteria item X_n calculated according to an appendix should satisfy the following requirements.

		Critical	Grade	
Reference Item		Limits	Calculation System	
Reference lie		of X_n	Equation Weig	
	1. Total chemical substance	≤ 3 5	-1.5 X ₁ +57.3	3.5
	2. Aerobic non-biodegradable substance	≤ 10	-3.3 X ₂ +34.6	1.5
	3. Anaerobic non- biodegradable substance	≤ 20	-1.5X ₃ +34	3
	4. Critical dilution volume, toxicity (CDVtox)	≤ 80	-0.12 X ₄ +28.9	7
	Sum		≥ 300	

<Table 1> Environmental Grade Calculation Table of Commercial Dishwasher Detergents

3.1.3

In regard to recycling at the stage of disposal, packing materials should satisfy the following requirements.

3.1.3.1

"Packing material evaluation index" of the primary packing material for each standard of the main container should be 15 or below 15.

Note1) The definition of "the primary packing material" should be fulfill the \lceil Regulation concerning criterion of package material and package method _ of \lceil Act on the Promotion of Saving and Recycling of Resources _ .

Note2) Package material evaluation index [g/wash] =

entire weight of packing material[g] - weight of use of recycling material[g]

the number of function unit out of entire products

3.1.3.2

In a case where label and shrink film are used, the same or the same kind of materials as the body of a case should be used and metal coating should not be executed. However, an exception should be made in case of in-mold label (PP: white and transparent PE) inserted upon case molding.

3.1.3.3

There should be an indication of the recommendation for standard usage on the product.

3.2 Quality Criteria

3.2.1

The detergency of the product should be equivalent to the detergency of index detergent or more.

3.2.2

The product should be satisfied in accordance with the $\$ $\$ Voluntary Safety Confirmation Safety Criterion $\$ of $\$ $\$ Quality Management and Safety Control of Industrial Product Act $\$.

3.3 Consumer information

Indicate those items that contribute to the reasons for certification of the relevant product, (less water pollution, environmental friendly package materials)

4. Test Methods

Certification Criteria		Test method and verification method	
Environmental	3.1.1	Verification of submitted documents	
Criteria	3.1.2	Verification of submitted documents in accordance with Appendix	
ontonia	3.1.3	Verification of submitted documents	
	3.2.1	Authorized test institution test reports in accordance with (1) and (2)' verification and test method ^{note)}	
Quality Criteria	3.2.2	Test reports of authorized institutions or certificates for the equivalent or higher criteria in accordance with 'Standards and Criteria for Sanitary Goods'	
Consumer Information		Verification of submitted documents	

Note) With regard to an assessment result report on detergency, either that conducted by an authorized test institution or one conducted by a laboratory independently managed by the applicant agency will be suitable.

4.1 General Matters

4.1.1

One test sample shall be required for each applied product. Only if more than one test sample is needed, the former requirement may not be met.

4.1.2

Test samples shall be collected at random by a certification institute from products in market or those in storage at the production site.

4.1.3

Test result shall be numerically set according to KS Q 5002 (Statistical interpretation method of the data – Part 1: Statistical description of the data).

4.2 Test method for determining the washability of commercial dishwasher detergents

Note) The test method has been standardized so that the washability of commercial dishwasher detergents can be assessed objectively. In addition to this test method, where a new method designed to assess the washability of commercial dishwasher detergents in consideration of the characteristics of large-sized food service venues in Korea is proposed, said corresponding test method may be applied. It should be noted that the composition and usage of the index detergent should conform to this standard.

4.2.1

Principle: The basis shall be the "amount of detergent to be used after diluted with 100 L water". And if the washability of the test detergent in accordance with B. Washability Test Method is at least equivalent to the washability of the index detergent, regard the indication that "the value where the minimum usage (the maximum dilution rate) is converted into the amount of detergent [g] to be used after being diluted with 100 L water" as being necessary to be indicated on the detergent packaging as a functional unit.

4.2.2

Test equipment and materials

4.2.2.1

Prepare the index detergent according to the following composition:

CAS No.	Ingredients	Ratio [%]
1310-58-3	Potassium hydroxide	15
10213-79-3	Sodium metasilicate, pentahydrate	7
64-02-8	Tetrasodium ethylenediamine tetraacetate (EDTA-4Na)	3

9003-04-7	Sodium polyacrylate	3
-	Deionized water	Balance
. .		

Note) The index detergent should be used within six months of being manufactured.

4.2.2.2

In principle, the blue plates used for the test should be made of stainless steel, and be 400±20 mm in width and 295±15 mm in length. More than 120 pieces should be prepared. Except for the blue plates to which pollutant is adhered, using those containing other matter, such as melamine resin, may be accepted.

4.2.2.3

Prepare pollutants according to the following criteria and replace them for every test.

a) Grains of boiled rice

• Pour rice that has been polished using the pounding method in less than s ix months in sufficient water, quickly mix it, and then remove the water immediately. Rub it vigorously and rinse it 3-4 times until the water becomes clean.

• After soaking the rice in sufficient water for about 30 minutes during summer, or two hours during winter, pour it into a sieve basket to drain the water.

• Pour the rice and the water corresponding to about 1.1 times the amount of rice into a cooker and then cook by normal means. If an electric rice cooker is used, follow the user manual provided by the manufacturer.

• Ensure the boiled rice is not sp oiled or dried during cooking and then make it within eight hours of being cooked.

b) Egg yolk

• Use a fresh 50-6 5g egg (refer to the expiry date).

• Use at least three eggs. Separate the yolk from the white.

• Mix the separated yolk well and store it in a refrigerator prior to use.

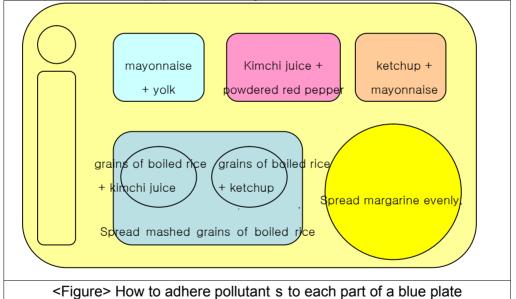
c) Kimchi

• Use kimchi that conforms to the quality standards prescribed in K S H 2169 (Kimchi), which is properly mature kimchi with a head.

 Use powdered red pepper filtered with a standard sieve (with a mesh size of 1.7 mm) in accordance with KS A 5101-1 (Test Sieves – Part 1: Test Sieves of Metal W ire). d) With regard to margarine, mayonnaise, and ketchup, each to be used for the test should meet corresponding Korean Industrial Standards and should be stored in a refrigerator prior to use.

Section	Margarine	Mayonnaise	Ketchup
Corresponding Korean	KS H 2002	KS H 2109	KS H 2144
Industrial Standard	(Margarine)	(Mayonnaise)	(Tomato Ketchup)

4.2.3 Test method


4.2.3.1 General

a) The washability test is expressed using the average of the values resulting from twice-repeated tests.

b) In principle, every test should be conducted in a stable state after the corresponding product is in its usual usage state.

4.2.3.2 Preparation of the blue plates to which pollutant s are to be adhered

a) The pollutants to be adhered to each part of a blue plate are as shown in the figure below. A t least 100 blue plates should be prepared for testing.

b) Pollutant adherence shall be as follows:

• Adhesion of grains of boiled rice: After completely mashing about 3 g of the grains of boiled rice, adhere it to the corresponding part, (where boiled rice is normally placed), and then leave it at room temperature for more than 30 minutes.

• Adhesion of margarine: After leaving the margarine removed from a refrigerator at room temperature for about one hour, apply around 2 g evenly to the corresponding part of the blue

plat e, (where a soup bowl is normally placed). Then leave it at room temperature for more than 30 minutes.

Adhesion of mayonnaise + egg yolk: After satisfactorily mixing the mayonnaise and egg yolk removed from a refrigerator at a proportion of 1 to 1, apply that pollutant of about 2 g evenly to the corresponding part of a blue plate, (where a side dish is normally placed; refer to the < figure > above), using a flat type brush (Type 28) as prescribed in KS G 2103 (Artists' Water Color B rushes). After adhesion, leave it at room temperature for more than 30 minutes.

 Adhesion of kimchi juice + powdered red pepper: After applying around 1 g of kimchi juice evenly to the corresponding part of a blue plate, (where a side dish is normally placed; refer to the < figure > above), using a flat type brush (Type 28) as prescribed in KS G 2103 (Artists' Water Color B rushes), sprinkle powdered red pepper evenly over the soiled part with around 0.1 g of kimchi juice. After adhesion, leave it at room temperature for more than 30 minutes.

Adhesion of ketchup + mayonnaise: After satisfactorily mixing the ketchup and mayonnaise removed from a refrigerator at a proportion of 1 to 1, apply around 2 g of that pollutant evenly to the corresponding part of a blue plate, (where a side dish is normally placed; refer to the < figure > above), using a flat type brush (Type 28) as prescribed in KS G 2103 (Artists' Water Color B rushes). After adhesion, leave it at room temperature for more than 30 minutes.

• Adhesion of grains of boiled rice + kimchi juice: Apply around 0.5 g of kimchi juice evenly to a quarter of the part where grains of boiled rice (refer to 1) above) are adhered using a flat type brush (Type 28) as prescribed in KS G 2103 (Artists' Water Color B rushes). After adhesion, leave it at room temperature for more than 30 minutes.

• Adhesion of grains of boiled rice + ketchup + mayonnaise: Mix the ketchup and mayonnaise removed from a refrigerator satisfactorily at a proportion of 1 to 1. Apply around 1 g of that pollutant evenly to a quarter of the part where grains of boiled rice (refer to 1) above) are adhered, using a flat type brush (Type 28) as prescribed in KS G 2103 (Artists' Water Color B rushes). After adhesion, leave it at room temperature for more than 30 minutes.

4.2.3.3 Wash test

a) Installation of the dishwasher: Install and use the dishwasher according to the standard prescribed by the manufacturer. Use tap water for the water supply and set the water temperate at both wash and rinse stages according to the following table. If there are any differences, record them in a corresponding test result report.

Section	Wash Stage	Rinse Stage
Water Temperature [°C]	65±1.5	80±3

b) Operation of the dishwasher: With regard to the amount of detergent to be added, if the deter gent is for testing, add it based on the 'functional unit' standard. If it is index detergent, add it at 'a proportion of washing water of 1 L to detergent of 1 g'. Do not use a rinse agent separately. Operate the washer and load blue plates at a constant speed.

Note) Do not conduct rough washing on the blue plates where pollutant s are adhered before being loaded in the washer. For those to which pollutant s have been adhered for more than two hours, they can be soaked in a water tank at temperatures of lower than 65°C within 30 minutes before being loaded in the washer.

• In principle, the washer should be operated according to the washing program or method outlined by the manufacturer. Record the applied washing program or method in the corresponding test result report.

• Adjust the speed of loading the blue plates so that the smallest value in the wash capacity range outlined by the manufacturer can be applied.

• In principle, blue plates to be loaded should have pollutant s adhered. If soiled blue plates cannot be prepared satisfactorily, however, put the equivalent pollutant s in the washer periodically to make up for any lack of pollutant load.

Note) The amount of pollutant s to be adhered for each blue plate where there is no pollutant s previously adhered is as follows:

Pollutant Type	Grains of Boiled Rice	Margarine	Yolk	Kimchi Juice	Mayonnaise	Ketchup
Loaded amount for each blue plate[g]	3	2	1	1.5	2.5	1.5

• The prepared blue plates for the adhesion of pollutant s are loaded at half the amount after 10 minutes and then 40 minutes after the washer is operated. After being washed, they will be used for the assessment of washing property performance.

4.2.3.4

Assessment of washing performance

a) An assessment of washing performance should be conducted on a total of 100 blue plates as described below:

- 50 blue plates that were loaded 10 minutes after the washer was operated

- 50 blue plates that were loaded 40 minutes after the washer was operated

b) Washing performance shall be assessed 10 minutes after the last blue plate is removed from the washer. In principle, the assessment should be conducted by one inspector at a location where a lamp of 1,000-1,500 Lux is installed 1 m above the test plates. If it is difficult to conduct a visual check of the pollutant s on the blue plates, use the indicator regulated in the following table:

<table> Detection Indicator by Pollutant Type</table>				
Detection IndicatorPollutant TypeColor generation in the presence of an pollutantRemarks (name of the reaction)				
Iodine - potassium iodide solution	Dark blue	lodine reaction		
5% sodium hydroxide + 1% copper sulfate	Protein	Purple	Buret reaction	
Sudan III solution	Fat	Scarlet	Sudan III reaction	

c) The assessment of washing performance is scored on each individual blue plate according to the following table. General washing performance is shown using a sum total of scores for the washing performance of each individual blue plate. If the general washing performance of the test detergent is higher than those of the index detergent, washing performance will be judged as being excellent.

<table> Assessment of Washing performance of Blue Plates</table>					
Evoluction	Assessment Criteria		ment Criteria		
Evaluation	Score –	No. of pollutants, n	Total soiled area, A [mm]		
Clean (appropriate)	1	≤4	≤4		
Lightly soiled	0	$4 < n \le 10$	4 < A ≤ 20		
Critically soiled	-1	> 10	> 20		

4.2.4 The test report should include the following:

4.2.4.1 Test method and reference standards

4.2.4.2 Details of the material used in manufacturing the index detergent

4.2.4.3 Individual test data and standard deviation

5. Reason for Certification

"Less water pollution, Environmental friendly package materials"

[Annex] Verification Methods of the Correlations with Water Pollution

A. Purpose

This Annex is aimed to describe how to verify the correlations with water pollution.

B. Definitions

(1) "AC (Active Contents)" refers to the total weight of chemical substances, excluding water, which composes a product.

(2) "Readily biodegradable" refers to the biodegradability for each test method conforming to the following in the general micro-organic degradability test which has a reduced opportunity for degradation compared to the practical environment, to examine whether chemicals are easily micro-organically degradable in the environment.

Bio-degradability test method	Bio-degradability	Bio-degradability test method	Bio-degradability
OECD 301 A		OECD 301 D	
(DOC Die-away test)	≥70 %	(Closed bottle test)	≥60 %
KS M ISO 7827		KS M ISO 10707	
		OECD 301 E	
OECD 301 B	≥60 %	(Modified OECD	≥ 70 %
(CO ₂ Evolution test)	≥00 %	screening test)	
KS M ISO 9439		KS M ISO 7827	
		OECD 301 F	
OECD 301 C		(Manometric	≥60 %
[Modified MITI test()]	≥60 %	respirometry test)	< 00 %
KS M ISO 14851		KS M ISO 9408	

Note) Standard names

• KS M ISO 7827 (How to Evaluate the Final Aerobic Biodegradability in Water-Liquid Media-How to Analyze Dissolved Organic Carbon)

• KS M ISO 9439 (How to Evaluate the Final Aerobic Biodegradability in Water-Liquid Media-How to Test the Generation of Carbon Dioxide)

• KS M ISO 14851(Measurement of the Final Aerobic Biodegradability of Plastic Materials in the Water Liquid Media – Measurement of Oxygen Quantity Consumed by the Airtight Respiratory Organ)

• KS M ISO 10707 (How to Evaluate the "Final" Aerobic Biodegradability in Water-Liquid Media-How to Analyze Biochemical Oxygen Demand (BOD) (Airtight Bottle Test)

• KS M ISO 9408 (Water - Evaluation of the Aerobic Final Biodegradability of Organic Compounds in Liquefied Media by Measurement of the Biological Oxygen Demand (BOD) with an Airtight Breathalyzer)

(3) "Inherently biodegradable" refers to that the biodegradability for each test method conforming to the following in the general microorganism degradability test performed in the conditions, which has the reduced opportunity of degradation compared to the practical

environment, to examine whether chemicals are easily micro- organically degradable in the environment.

Bio-degradability test method	Bio- degradability	Bio-degradability test method	Bio- degradability		
OECD 302 A					
(Modified SCAS test)		OECD 302 B			
KS M 9138	≥70 %	(Zahn-Wellens/EMPA test)	≥70 %		
OECD 302 C		KS M ISO 9888			
(Modified MITI test())		N3 W 130 9000			

Note) Standard names

•KS M 9138 (How to Evaluate the Aerobic Biological Oxygen Degradation (BOD) of Organic Compounds in Water [Semi-continuous Activated Sludge (SCAS) Process])

•KS M ISO 9888 (How to Measure the Aerobic Degradability of Organic Compounds in the Water-Liquid Media (Static Method: Zahn-Wellens Method)

(4) "DF (Degradation factor)" "DF" refers to a coefficient for the biodegradability of each material, with the biodegradability divided into easily biodegradable, inherently biodegradable and not biodegradable.

(5) "TF (Toxicity factor)" "TF" refers to a coefficient standing for the toxicity of a substance as a value obtained by dividing acute toxicity data(LC50 and EC50) by uncertainty factor (SF).

(6) "The acute toxicity" refers to a toxicity that appears when a chemical substance is administered (processed) to a test animal once or a few times within 24, 72 and 96 hours, or when an inhalable substance is exposed to a test animal once during a limited time that does not exceed 24, 72 and 96 hours.

(7) "The chronic toxicity" refers to a general toxicity that occurs as a result of repeated administration or exposure during a considerable or whole period of the test animal's life expectancy. However, it excludes reproductive toxicity, genetic toxicity and cancer-causing properties.

C. Calculation Methods

(1) X_n Calculation Methods

With regard to the emission of water pollutants in the use phase that applies to the detergents and cleaning agents (EL301 - EL309) under the middle classification of the \familiambda mark Products and Certification Criteria \familiambda , calculate the value for each environmental influence item X_n in accordance with Appendix Table 1 using the DID in Appendix Table 2 and based on the calculation methods presented in (A) to (D). Calculate the value of the constituent substances not included in DID after building the data in accordance with Appendix Table 3. Calculate the score for each item down to one decimal place.

(A) Total chemical substance(X₁) [g/wash] : Adds the usage amount by functional unit [g/wash(i)] depending on the content [%] of all chemical substances excluding water (including bound water among component substances .

(B) Aerobic non-biodegradable substance(X_2) [g/wash] : Add the usage amount [g/wash(i)] by functional unit in accordance with the content [%]of the substances conforming to aerobic non-biodegradable substances among DID list.

(C) Anaerobic non-biodegradable substance(X_3) [g/wash] : Add the usage amount [g/wash(i)] by functional unit in accordance with the content [%]of the substances conforming to anaerobic non-biodegradable substances among DID list.

(D) Limit dilution amount(CDV_{tox}, X_4) [L/wash] : Calculate $CDV_{tox}(i)$ by each substance by applying TF value, DF value and usage amount by functional unit [g/wash(i)] depending on the

content in CDV_{tox}(i) =
$$\frac{\frac{g}{wash(i)} \times DF(i)}{TF(i)}$$
 and add them all.

(2) Calculation Methods of the Total Scores

(A) Multiply the results from "(1) X_n Calculation Methods "by the added values for standard items and then total them.

(B) Calculation examples

1) Total = $(aX_1+b\times3.5) + (cX_2+d\times1.5) + (eX_3+f\times3) + (gX_3+h\times7)$

<Appendix Table 1> Document Form for Submission

A. General matters

(1) The environmental labeling application products shall be distributed and sold in certain scopes or higher and equipped with the distribution and sales conditions as well as production processes.

(2) The submitted documents shall not be used for other purposes than as evidence to decide whether products conform to criteria.

B. How to write the document forms for submission

(1) All the data of individual substance comprising the product shall be provided conforming to the following format and if substances not in DID are used, and formats for submitted documents shall be prepared and submitted based on the presented method in <Annex Table 3>.

(2) However, if a substance which is not included in DID list conforms to the following within the scope of 10% or under among all products, all chemical substance items can be applied without establishing separate data according to the presented method in <Annex Table 3>.

(A) Active Contents(AC) Natural extracts under 1%. However, substance in Food Code Asterisk1 can be used limitlessly regardless of the content amount.

Note: Test result shall be numerically set according to KS Q 5002 (Statistical interpretation method of the data – Part 1: Statistical description of the data), when calculating the content.

(B) Active Contents(AC) Substances under 1%, and which don't fall under the following R number described in Addendum I of EU Guideline 67/548/EEC

- R 40 : limited evidence of a carcinogenic effect
- R 45 : may cause cancer
- R 46 : may cause heritable genetic damage
- R 49 : may cause cancer by inhalation
- R 50 : very toxic to aquatic organisms
- R 51 : toxic to aquatic organisms
- R 52 : harmful to aquatic organisms
- R 53 : may cause long-term adverse effects in the aquatic environment
- R 60 : may impair fertility
- R 61 : may cause harm to the unborn child
- R 62 : possible risk of impaired fertility
- R 63 : possible risk of harm to the unborn child

R 64 : may cause harm to breastfed babies

R 68 : possible risks of irreversible effects

(3) Fix the content of water based on the KS M 2709 (5.21.1 How to Heat and Add Weight), and record the value, inclusive of that of bound water, into the following table.

(4) It is a principle to write down all individual substance data that constitute the product.

(5) When writing down the contents, the water contained in individual constitution substances shall be excluded. (E.g.: In case of EDTA with the ratio of EDTA :Water = 50 : 50, only 50% of the contents are written down as EDTA contents)

C. Documents to be Submitted

(1) Product Composition Data : Basic data to check the product composition

1) Technical description of each substance (Substance name, content, CAS No. INCI Name)

2) Function of each substance (E.g.: surfactant, preservative) description

3) MSDS included with supplier of each substance

4) Water content of all substances if water is included in the submitted content by substance

5) Composed substance fixed quantity result

a) In case of a fixed quantity test data for composed substance of chemical substance, test result of publicly authorized organization or the following internal test data used internally(within 3 months) shall be provided.

b) However, in case of the substance that cannot be verified with the company's internal test records, the data shall be verified by checking the input amount of used substances recorded on the IT management system or the production records through on-site due diligence.

(A) DID by product composition substance to judge on the water contamination effects

					Total	Aerobic non-	Anaerobic non-	Critical
DID	Use material	Content	TF	DF	chemical	biodegradable	biodegradable	dilution
No.	name	[%] ^{Note)}	IF		substance	substance	substance	volume
					[g/wash]	[g/wash]	[g/wash]	[L/wash]

(2) In case of data for the substance non in DID, the data for the substances not in DID shall be established in accordance with [Annex table3] as follows and submitted.

Substances not in DID									
Substance	CAS	Toxicity	DF	Bio-degradability					

name	No.	Measured				Anaerobic non-	Aerobic non-
		value	SF	TF		biodegradable	biodegradable
		[mg/L]				substance	substance

<Appendix Table 2> DID (detergent ingredients database)

A. General matters

(1) This database is not a list of substances that are available for products, and may include a list of substances prohibited from use or detection in accordance with the certification criteria for environmental labeling products.

(2) In case of O(No test) regarding the biodegradable ability, biodegrade/ non-biodegrade can be applied depending on the test results when submitting the actual test data for the respective substances.

(3) Compounds and Mixture Application Method

(A) If an individually used substance exists in the final product

1) DID No. is applied based on the substance remaining in the final product. However, in case of an individual substance remaining after the chemical reaction DID No. is applied for the chemical substance before the compound by the remaining amount.

2) Application example : In case fatty acid used to make soap compounds, if 70% only is neutralized and 30% of the usage remains in the final product, 70% for soap(DID No.12) and 30% for fatty acid(DID No.123) are applied in calculation.

(B) Mixture

1) In case we can acquire appropriate toxic data for substances of 2 types or more among mixture, the toxicity addition value of such substances is calculated based on the constant formula as follows and this calculated value can be used.

2) In case of applying the following constant formula among mixture, the toxicity of mixture is calculated using the toxicity value of each substance for the same life type(That is, fish, water flea or green algae), the smallest toxicity value among the calculations (That is, the value acquired from the most sensitive type among 3 life types) is adopted.

	C _i = Concentration of substance I (Weight %)
ΣC_{1} ∇C_{2}	$L(E)C_{\rm 50i}$ = $LC_{\rm 50}$ or $EC_{\rm 50}$ of substance i (mg / L)
$\frac{\underline{L} \mathbf{c}_1}{\mathbf{L}(\mathbf{E})\mathbf{C}_{50m}} = \sum \frac{\mathbf{c}_1}{\mathbf{L}(\mathbf{E})\mathbf{C}_{50i}}$	N = Substance number (i has 1~ n value)
2(2) 550m 2(2) 550	$L(E)C_{50m}$ = $L(E)C_{50}$ in the part where the test data exist
	among mixtures

A) Application Example (cetearyl alcohol)

Calculation and application by applying the calculated values of 0.287 if mixed by 5:5, and 0.37 if mixed by 2:8, using the toxic data of the same biospecies of Cetyl Alcohol and Stearyl Alcohol

CAS NO	Substance Name	96 hours EC_{50} algae	SF(acute)	TF(acute)
36653-82-4	Cetyl Alcohol	676	10000	0.0676

112-92-5 Stearyl Alcohol 235 1000 0.235

B. List

			Acute toxic	city		Chronic toxic	ity	Biodegradability			
DID No.	Materials	LC50/ EC50	SF (Safety Factor)	TF (Toxicity Factor)	NOEC(*)	SF(*) (Safety Factor)	TF (Toxicity Factor)	DF (Degradation factor)	aerobic	anaerobic	
	Anionic surfactants										
1	Linear alkyl benzene sulphonates 11,5-11,8 (LAS)	4.1	1000	0.0041	0.69	10	0.069	0.05	R	N	
2	LAS (C10-13 alkyl) triethanolamine salt	4.2	1000	0.0042	3.4	100	0.034	0.05	R	0	
3	C 14/17 Alkyl sulphonate	6.7	5000	0.00134	0.44	10	0.044	0.05	R	N	
4	C 8/10 Alkyl sulphate	132	5000	0.0264			0.0264	0.05	R	Y	
5	C 12/14 Alkyl sulphate (AS)	2.8	1000	0.0028	2	100	0.02	0.05	R	Y	
6	C 12/18 Alkyl sulphate (AS) (#)			0.0149			0.027	0.05	R	Y	
7	C 16/18 Fatty alcohol sulphate (FAS)	27	1000	0.027	1.7	50	0.034	0.05	R	Y	
8	C 12/15 A 1-3 EO sulphate	4.6	1000	0.0046	0.1	10	0.01	0.05	R	Y	
9	C 16/18 A 3-4 EO sulphate	0.57	10000	0.000057			0.000057	0.05	R	Y	
10	Dialkyl sulpho succinate	15.7	1000	0.0157			0.0157	0.5	I	Ν	
11	C 12/14 Sulpho- fatty acid methylester	9	10000	0.0009	0.23	50	0.0046	0.05	R	N	
12	C 16/18 Sulpho- fatty acid methylester	0.51	5000	0.000102	0.2	50	0.004	0.05	R	N	
13	C 14/16 aDFa Olefin sulphonate	3.3	10000	0.00033			0.00033	0.05	R	N	
14	C 14/18 aDFa Olefin sulphonate	0.5	5000	0.0001			0.0001	0.05	R	N	
15	Soap C>12-22	22	1000	0.022	10	100	0.1	0.05	R	Y	
16	Lauroyl Sarcosinate	56	10000	0.0056			0.0056	0.05	R	Y	
17	C9/11 2-10 EO Carboxymethylated, sodium salt or acid	100	10000	0.01			0.01	0.05	R	о	
18	C12/18 2-10 EO Carboxymethylated, sodium salt or acid	8.8	1000	0.0088	5	100	0.05	0.05	R	0	
19	C 12/18 Alkyl phosphate esters	38	1000	0.038			0.038	0.05	R	N	
54	AES (C 15, 5 EO)			0.016	1.6	100	0.016	0.05	R	Y	
	Non-ionic surfactants										
20	C8 A 1-5 EO	7.8	1000	0.0078			0.0078	0.05	R	Y	

			Acute toxi	city		Chronic toxi	city	Biod	legradabil	ity
DID No.	Materials	LC50/ EC50	SF (Safety Factor)	TF (Toxicity Factor)	NOEC(*)	SF(*) (Safety Factor)	TF (Toxicity Factor)	DF (Degradation factor)	aerobic	anaerobic
21	C 9/11 A, >3-6 EO predominantly linear	5.6	1000	0.0056			0.0056	0.05	R	Y
22	C 9/11 A, >6-10 EO predominantly linear	5	1000	0.005			0.005	0.05	R	Y
23	C 9/11 A, 5-11 EO multibranched	1	1000	0.001			0.001	0.05	R	0
24	C10 A, 5-11 EO multi br. (Trimer-propen- oxo-alcohol)	10	1000	0.01			0.01	0.05	R	Y
25	C 12/15 A, 2-6 EO predominantly linear	0.43	1000	0.00043	0.18	50	0.0036	0.05	R	Y
26	C12/14 5-8 EO 1 t-BuO (endcapped)	0.23	1000	0.00023	0.18	100	0.0018	0.05	R	0
27	C 12/15 A, 3-12 EO multibranched	1	1000	0.001	3.2	100	0.032	0.05	R	0
28	C 12/15 (mean value C<14) A, >6-9 EO	0.63	1000	0.00063	0.24	10	0.024	0.05	R	Y
29	C 12/15 (mean value C>14) A, >6-9 EO	0.4	1000	0.0004	0.17	10	0.017	0.05	R	Y
30	C 12/15 A, >9-12 EO	1.1	1000	0.0011			0.017	0.05	R	Y
31	C 12/15 A >12-20 EO	0.7	1000	0.0007			0.0007	0.05	R	0
32	C 12/15 A >20-30 EO	13	1000	0.013	10	100	0.1	0.05	R	0
33	C 12/15 A, >30 EO	130	1000	0.13			0.13	0.5	I	0
34	C 12/18 A, 0-3 EO	0.3	1000	0.0003			0.0003	0.05	R	Y
35	C 12/18 A, 5-10 EO	1	1000	0.001	0.35	100	0.0035	0.05	R	0
36	C 12/18 A, >10-20 EO	1	1000	0.001			0.0035	0.05	R	0
37	C 16/18 A, 2-8 EO	3.2	1000	0.0032	0.4	100	0.004	0.05	R	Y
38	C 16/18 A, >9-18 EO	0.72	1000	0.00072	0.32	10	0.032	0.05	R	Y
39	C 16/18 A, 20-30 EO	4.1	1000	0.0041			0.0041	0.05	R	Y
40	C 16/18 A, >30 EO	30	1000	0.03			0.03	0.5	I	Y
41	C12-15 A 2-6 EO 2-6 PO	0.78	1000	0.00078	0.36	100	0.0036	0.05	R	0
42	C10-16 A 0-3 PO 6-7 EO	3.2	5000	0.00064	1	100	0.01	0.05	R	о
43	Glycerin (1-5 EO) cocoate	16	1000	0.016	6.3	100	0.063	0.05	R	Y
44	Glycerin (6-17 EO) cocoate	100	1000	0.1			0.1	0.05	R	Y
45	C 12/14 Glucose amide	13	1000	0.013	4.3	50	0.086	0.05	R	Y
46	C 16/18 Glucose amide	1	1000	0.001	0.33	50	0.0066	0.05	R	Y

			Acute toxi	city		Chronic toxi	city	Biod	legradabil	ity
DID No.	Materials	LC50/ EC50	SF (Safety Factor)	TF (Toxicity Factor)	NOEC(*)	SF(*) (Safety Factor)	TF (Toxicity Factor)	DF (Degradation factor)	aerobic	anaerobic
47	C 8/10 Alkyl polyglycoside	28	1000	0.028	5.7	100	0.057	0.05	R	Y
48	C8/12 Alkyl polyglycoside, branched	480	1000	0.48	100	100	1	0.05	R	Ν
49	C 8/16 or C12-14 Alkyl polyglycoside	5.3	1000	0.0053	1	10	0.1	0.05	R	Y
50	Coconut fatty acid monoethanolamide	9.5	1000	0.0095	1	100	0.01	0.05	R	Y
51	Coconut fatty acid monoethanolamide 4-5	17	10000	0.0017			0.0017	0.05	R	Y
52	Coconut fatty acid diethanolamide	2	1000	0.002	0.3	100	0.003	0.05	R	о
53	PEG-4 Rapeseed amide	7	1000	0.007			0.007	0.05	R	Y
55	AE (C 6~12, 10~15 EO 8~12 PO)			0.02	1	50	0.02	1	Р	Ν
	Amphoteric surfactants									
60	C12/15 Alkyl dimethylbetaine	1.7	1000	0.0017	0.1	100	0.001	0.05	R	0
61	alkyl C12/18 Amidopropylbetaine	1.8	1000	0.0018	0.09	100	0.0009	0.05	R	Y
62	C12/18 Alkyl amine oxide	0.3	1000	0.0003			0.0003	0.05	R	Y
	Cationic surfactants									
	Alkyl trimethyl ammonium salts	0.1	1000	0.0001	0.046	100	0.00046	0.5	1	0
	Alkyl ester ammonium salts	2.9	1000	0.0029	1	10	0.1	0.05	R	Y
	Preservatives									
80	1,2-Benzisothiazol-3-one	0.15	1000	0.00015			0.00015	0.5	I	N
81	Benzyl alcohol	360	1000	0.36			0.36	0.05	R	Y
82	5-bromo-5-nitro-1,3-dioxane	0.4	5000	0.00008			0.00008	1	Р	0
83	2-bromo-2-nitropropane-1,3-diol	0.78	1000	0.00078	0.2	100	0.002	0.5	I	0
84	Chloroacetamide	55.6	10000	0.00556			0.00556	1	0	0
85	Diazolinidylurea	35	5000	0.007			0.007	1	Ρ	0
86	Formaldehyde	2	1000	0.002			0.002	0.05	R	0
87	Glutaraldehyde	0.31	1000	0.00031			0.00031	0.05	R	0

			Acute toxi	city		Chronic toxi	city	Biod	legradabil	ity
DID No.	Materials	LC50/ EC50	SF (Safety Factor)	TF (Toxicity Factor)	NOEC(*)	SF(*) (Safety Factor)	TF (Toxicity Factor)	DF (Degradation factor)	aerobic	anaerobic
88	Guanidine, hexamethylene-, homopolymer	0.18	1000	0.00018	0.024	100	0.00024	1	Ρ	о
89	CMI + MIT in mixture 3:1 (§)	0.0067	1000	0.0000067	0.0057	50	0.000114	0.5	I	0
90	2-Methyl-2H-isothiazol-3-one (MIT)	0.06	1000	0.00006			0.00006	0.5	I	0
91	Methyldibromoglutaronitrile	0.15	1000	0.00015			0.00015	0.05	R	0
92	e-phtaloimidoperoxyhexanoic acid	0.59	5000	0.000118			0.000118	1	Ρ	0
93	Methyl-, Ethyl- and Propylparaben	15.4	5000	0.00308			0.00308	0.05	R	Ν
94	o-Phenylphenol	0.92	1000	0.00092			0.00092	0.05	R	0
95	Sodium benzoate	128	1000	0.128			0.128	0.05	R	Y
96	Sodium hydroxy methyl glycinate	36.5	5000	0.0073			0.0073	1	0	0
97	Sodium Nitrite	87	10000	0.0087			0.0087	1	NA	NA
98	Triclosan	0.0014	1000	0.0000014	0.00069	10	0.000069	0.5	I	0
99	Phenoxy-ethanol	344	1000	0.344	200	100	2	0.05	R	0
	Other ingredients									
110	Silicon	250	1000	0.25			0.25	1	Р	Ν
111	Paraffin	1000	10000	0.1			0.1	1	Р	0
112	Glycerol	4400	5000	0.88			0.88	0.05	R	Y
113	Phosphate, as STPP(sodium tripolyphosphate)	1000	1000	1			1	0.15	NA	NA
114	Zeolite (Insoluble Inorganic)	1000	1000	1	175	50	3.5	1	NA	NA
115	Citrate and citric acid	825	1000	0.825	80	50	1.6	0.05	R	Y
116	Polycarboxylates	200	1000	0.2	106	10	10.6	1	Ρ	Ν
117	Nitrilotriacetat (NTA)	494	1000	0.494	64	50	1.28	0.05	R	0
118	Ethylenediaminetetraacetic acid (EDTA)	121	1000	0.121	22	50	0.44	0.5	I	Ν
119	Phosphonates	650	1000	0.65	25	50	0.5	1	Ρ	Ν
120	ethylenediaminedisuccinate (EDDS)	320	1000	0.32	32	50	0.64	0.05	R	Ν
121	Clay (Insoluble Inorganic)	1000	1000	1			1	1	NA	NA
122	Carbonates	250	1000	0.25			0.25	0.15	NA	NA
123	Fatty acids C>=14	3.7	5000	0.00074			0.00074	0.05	R	Y
124	Silicates	250	1000	0.25			0.25	1	NA	NA

			Acute toxic	city		Chronic toxic	city	Biodegradability		
DID No.	Materials	LC50/ EC50	SF (Safety Factor)	TF (Toxicity Factor)	NOEC(*)	SF(*) (Safety Factor)	TF (Toxicity Factor)	DF (Degradation factor)	aerobic	anaerobic
125	Polyasparaginic acid, Na-salt	410	1000	0.41			0.41	0.05	R	Ν
126	Perborates (as Boron)	14	1000	0.014			0.014	1	NA	NA
127	Percarbonate (See carbonate)	250	1000	0.25			0.25	0,15	NA	NA
128	Tetraacetylethylenediamine (TAED)	250	1000	0.25	500	100	5	0.05	R	0
129	C1-C4 alcohols	1000	1000	1			1	0.05	R	Y
130	Mono-, di- and triethanol amine	90	1000	0.09	0.78	100	0.0078	0.05	R	Y
131	Polyvinylpyrrolidon (PVP)	1000	1000	1			1	0.5	I	Ν
132	Carboxymethylcellulose (CMC)	250	5000	0.05			0.05	0.5	I	Ν
133	Sodium and magnesium sulphate	1000	1000	1	100	100	1	1	NA	NA
134	Calcium- and sodiumchloride	1000	1000	1	100	100	1	1	NA	NA
135	Urea	1000	5000	0.2			0.2	1	NA	NA
136	Silicon dioxide, quartz	1000	1000	1			1	1	NA	NA
137	Polyethylene glycol, MW>4000	1000	10000	0.1			0.1	1	Р	Ν
138	Polyethylene glycol, MW<4000	1000	10000	0.1			0.1	0.05	R	0
139	Cumene sulphonates	450	1000	0.45			0.45	0.5	I	Ν
140	Na-/Mg-/KOH	30	1000	0.03			0.03	0,05	NA	NA
141	Enzymes/proteins	25	5000	0.005			0.005	0.05	R	Y
142	Perfume, if not other specified (**)	2	1000	0.002			0.002	0.5	I	Ν
143	Dyes, if not other specified (**)	10	1000	0.01			0.01	1	Р	Ν
144	Starch	100	1000	0.1			0.1	0.05	R	Y
145	Anionic polyester	655	1000	0.655			0.655	1	Р	Ν
146	poly-2-vinylpyridine-N-oxide (PVNO) Povidone-iodine (PVPI)	530	1000	0.53			0.53	1	Ρ	Ν
147	Zn Ftalocyanin sulphonate	0.2	1000	0.0002	0.16	100	0.0016	1	Ρ	Ν
148	Iminodisuccinat	81	1000	0.081	17	100	0.17	0.05	R	N
149	FWA 1	11	1000	0.011	10	100	0.1	1	Р	N
150	FWA 5	10	1000	0.01	1	10	0.1	1	Р	N
151	1-decanol	2.3	5000	0.00046			0.00046	0.05	R	0
152	Methyl laurate	1360	10000	0.136			0.136	0.05	R	0

			Acute toxicity			Chronic toxicity			Biodegradability		
DID No.	Materials	LC50/ EC50	SF (Safety Factor)	TF (Toxicity Factor)	NOEC(*)	SF(*) (Safety Factor)	TF (Toxicity Factor)	DF (Degradation factor)	aerobic	anaerobic	
153	Formic acid (Ca salt)	100	1000	0.1			0.1	0.05	R	Y	
154	Adipic acid	31	1000	0.031			0.031	0.05	R	0	
155	Maleic acid	106	1000	0.106			0.106	0.05	R	Y	
156	Malic acid	106	1000	0.106			0.106	0.05	R	0	
157	Tartaric acid	200	10000	0.02			0.02	0.05	R	0	
158	Phosphoric acid	138	1000	0.138			0.138	0.15	NA	NA	
159	Oxalic acid	128	5000	0.0256			0.0256	0.05	R	0	
160	Acetic acid	30	1000	0.03			0.03	0.05	R	Y	
161	Lactic acid	130	1000	0.13			0.13	0.05	R	Y	
162	Sulphamic acid	75	1000	0.075			0.075	1	NA	NA	
163	Salicylic acid	46	1000	0.046			0.046	0.15	R	0	
164	Glycollic acid	141	5000	0.0282			0.0282	0.05	R	0	
165	Glutaric acid	208	5000	0.0416			0.0416	0.05	R	0	
166	Malonic acid	95	5000	0.019			0.019	0.05	R	0	
167	Ethylene glycol	6500	1000	6.5			6.5	0.05	R	Y	
168	Ethylene glycol monobutyl ether	747	5000	0.1494			0.1494	0.05	R	0	
169	Diethylene glycol	4400	10000	0.44			0.44	0.05	R	Y	
170	Diethylene glycol monomethyl ether	500	1000	0.5			0.5	0.15	R	0	
171	Diethylene glycol monoethyl ether	3940	5000	0.788			0.788	0.05	R	0	
172	Diethylene glycol monobutyl ether	1254	1000	1.254			1254	0.05	R	0	
173	Diethylene glycol dimethyl ether	2000	10000	0.2			0.2	0.5	I	0	
174	Propylene glycol	32000	1000	32			32	0.15	R	Y	
175	Propylene glycol monomethyl ether	12700	5000	2.54			2.54	0.05	R	0	
176	Propylene glycol monobutyl ether	748	5000	0.1496			0.1496	0.05	R	0	
177	Dipropylene glycol	1625	10000	0.1625			0.1625	0.05	R	0	
178	Dipropylene glycol monomethyl ether	1919	5000	0.3838			0.3838	0.05	R	0	
179	Dipropylene glycol monobutyl ether	841	5000	0.1682			0.1682	0.05	R	ο	
180	Dipropylene glycol dimethyl ether	1000	5000	0.2			0.2	0.5	I	0	

			Acute toxicity			Chronic toxicity			Biodegradability		
DID No.	Materials	LC50/ EC50	SF (Safety Factor)	TF (Toxicity Factor)	NOEC(*)	SF(*) (Safety Factor)	TF (Toxicity Factor)	DF (Degradation factor)	aerobic	anaerobic	
181	Triethylene glycol	4400	1000	4.4			4.4	0.5	I	0	
182	82 Tall oil		1000	0.0018			0.0018	0.5	I	0	
183	83 Ethylenebisstearamides		5000	0.028			0.028	0.5	I	0	
184	Sodium gluconate	10000	10000	1			1	0.05	R	0	
185	Glycol distearate	100	5000	0.02			0.02	0.05	R	Y	
186	Hydroxyl ethyl cellulose	209	5000	0.0418			0.0418	1	Р	0	
187	Hydroxy propyl methyl cellulose	188	5000	0.0376			0.0376	1	Р	0	
188	1-methyl-2-pyrrolidone	500	1000	0.5			0.5	0.05	R	0	
189	Xanthan gum	490	1000	0.49			0.49	0.05	R	0	
190	Trimethyl Pentanediol mono-isobutyrate	18	1000	0.018	3.3	100	0.033	0.05	R	0	
191	Benzotriazole	29	1000	0.029			0.029	1	Р	0	
192	Piperidinol-propanetricarboxylate salt	100	1000	0.1	120	100	1.2	0.5	I	0	
193	Diethylaminopropyl-DAS	120	1000	0.12	120	100	1.2	1	Ρ	0	
194	Methylbenzamide-DAS	120	1000	0.12	120	100	1.2	0.5	I	0	
195	Pentaerythritol-tetrakis-phenol-propionate		1000	0.038			0.038	1	Ρ	0	
196	Block polymers (***)	100	5000	0.02			0.02	1	Р	Ν	
197	Denatonium benzoate	13	5000	0.0026			0.0026	1	0	0	
198	Succinate	374	10000	0.0374			0.0374	0.05	R	0	
199	Polyaspartic acid	528	1000	0.528			0.528	0.05	R	Ν	
200	Xylene Sulphonate	230	1000	0.23	31	100	0.31	0.5	I	Ν	
201	Proteinhydrolizates, wheatgluten	113	5000	0.023			0.023	0.05	R	0	
202	Fatty acid, C6-12 methyl ester	21	10000	0.0021			0.0021	0.05	R	0	
203	Mn-Saltren (CAS 61007-89-4)	39	1000	0.039	4.3	100	0.043	0.5	I	0	
204	Tri-Sodium methylglycine diacetat	100	1000	0.1	16.7	50	0.334	0.05	R	0	
205	Disilicates	1000	10	100				0.05	R	Y	
206	Triethanolamine			0.078	0.78	10	0.078	0.05	R	Y	
207	Calcium formiate			10				0.05	R	Y	
208	Silica			10				0.05	R	Y	
209	PEG, high MW (MW>4000)			10				1	Р	Y	
210	PEG, low MW (MW<4000)			10				0.05	R	Y	

	DID Materials L		Acute toxicity			Chronic toxicity			Biodegradability		
			SF (Safety Factor)	TF (Toxicity Factor)	NOEC(*)	SF(*) (Safety Factor)	TF (Toxicity Factor)	DF (Degradation factor)	aerobic	anaerobic	
211	Cumene sulfonate	66	100	0.66				0.05	R	Ν	
212	Toluene sulfonate	66	100	0.66				0.05	R	Ν	
213	Monosaccharides (mannitol, sorbitol)	40000	5000	8				0.05	R	Y	
214	Hydrogen peroxide			0.016	1.6	100	0.016	0.05	R	Y	
215	Magnesium chloride	32	5000	0.0064				0.05	R	Y	
216	Ammonium chloride	109	5000	0.0218				0.05	R	Y	
217	Boric acid			0.1	10	100	0.1	0.05	R	Y	
218	Butylene glycol	1070	1000	1.07				0.05	R	Y	

Note)Abbreviation

<Insoluble inorganic substance> Inorganic substance have no or a very low possibility of solution.

- (*) If there is no chronic data, leave this column blank. In this case, identify TF(chronic) value with TF(acute)
- (**) According to the general approval rules, be sure to use the data in this DID list. However, exclude incense and dyes. If a certification applicant submits toxicity data values, the submitted data may be used to calculate TF values or decide degradability. Otherwise, use the values in the list.
- (***) Apply the application data on the aerobic biodegradation of DID no196 block polymer after presenting a test report
- (#) Calculate TF value as an average of C 12/14 Alkyl sulphate (AS) and C 16/18 Alkyl sulphate (AS) for the lack of toxicity results.
- (§) Mix 5-Chloro-2-Methyl-4-isothiazolin-3-one with 2-Methyl-4-isothiazolin-3-one at a rate of 3:1.
- NOEC : No observed effect concentration, concentration having no influence on dosage concentration
- EO : ethylene oxide
- PO : propylene oxide
- FWA 1 : disodium 4,4'-bis(4-anilino-5-morpholino-1,3,5-triazin-2-yl) amino stilbene-2, 2'-disulfonate
- FWA 5 : disodium 4,4'-bis(2-sulfostryryl) biphenyl

<Aerobic degradation>

- R : Means being easily biodegradable pursuant to the OECD Directives
- I : Means being inherently biodegradable pursuant to the OECD Directives
- P : Not biodegradable Failure in the test of inherent biodegradation
- O : Test not performed
- NA : Not applicable

<Anaerobic degradation>

- Y : Biodegradable under aerobic conditions
- N : Not biodegradable under aerobic conditions
- O : Test not performed
- NA : Not applicable

Appendix 3. Data on Construction Methods not Existing in DID [Related to 3. Certification Standard (1)]

A. General Matters

(1) Data supporting documents for materials not existing in DID shall include authorized laboratory test reports, the company's internal experimental data, and LC50 and EC 50 data described in MSDS, risk assessment report, etc.

(2) However, in the event that a company's internal experiment data, experimental resources, and the data related to MSDS and risk assessment report are submitted, verification shall be conducted by the Eco-label certification review committee.

B. Data Construction Method

(1) Toxic Factor (TF)

(a) TF value shall be constructed by dividing the median value of numerical multiple toxicity tests [mg/L] by the uncertainty factor (SF). Herein, for the purpose of constructing the eco-toxicological assessment data, the acute or chronic toxicity data affecting green algae, daphnia and fish shall be considered.

Toxicity Data	
Toxicity Data	Factor
Case in which NOEC data related to green algae, daphnia and fish exist	10
Case in which NOEC data exists for two of green algae, daphnia and fish	50
Case in which NOEC data exists for either green algae, daphnia or fish	100
Case in which L(E)C50 data related to green algae, daphnia and fish exist	1000
Case in which L(E)C50 data exist for two of green algae, daphnia and fish exist	5000
Case in which L(E)C50 data exist for either green algae, daphnia or fish	10000

Note1) In regard to the testing method, the following test method or equivalent methods can be applicable to OECD 201 green algae toxicity tests, OECD 202 daphnia toxicity tests, OECD 203, 204 fish toxicity tests: Regulations regarding the designation of research institutes of hazardous of chemical substances, <Appendix 2> Chemical substances testing method, 2. Ecological effect test, 1. Algae growth inhibition test, 2. Daphnia acute toxicity test, and 3. Fish acute toxicity test.

Note 2) The data extracted from QSARs (Quantitative Structure Activity Relationship)-(referring

to the following 1) can be used. However, there shall be 1 or two L(E)C 50 fish toxicity (LC50), green algae, daphnia and fish toxicity (EC50) data. In addition, you shall prove that the substance having L (E) C50 data shows the lowest toxicity value using NOEC of other homologue substance-(referring to the following 2) through quantitative structure activity relationships with the species.

1) QSAR represents an attempt to statistically correlate a descriptor (hydrophobicity, shape, electronic properties and spatial layout of the atom) on the chemical structure and properties of the mixture and activity (including chemical measurement and biological analysis). The object of QSAR is to search for substances including potential toxicity in light of ecological and public health needs and limited testing resources. If the characteristics of a compound are known, it will be possible to easily find suitable candidate material for the purpose using the characteristics identified through QSAR.

2) This refers to a group of compounds differentiated by CH_2 in the composition of organic compounds. The homologue substances include the very similar chemical properties and show the same reaction depending on the common functional groups. In addition, the physical properties such as melting point and boiling point vary regularly according to the increase of the number of carbon atoms. For example, LAS refers to the LAS including a different carbon coefficient, and AE refers to the AE including different added moles.

(2) Partition coefficient (DF)

(A) General Matters

Division	DF
Readily biodegradable - referring to note 1 ⁾	0.05
Readily biodegradable - referring to note 2) ⁾	0.15
Inherently biodegradable	0.5
Non-biodegradable	1

Note 1) In the following cases, although 10% or more of a 10-day window is non-biodegradable, it shall be considered as being readily biodegradable.

- Surfactant
- Substances composed of homologous substances and meeting the final biodegradation requirements (during 28 days, biodegradable of 60 to 70% or more)

Note 2) Case in which the final 28 days biodegradation is 60% or more, but non-biodegradation is 10% or more within 10 days.

(B) Inorganic substances

Division	DF
Biodegradable within 5 days	0.05
Biodegradable within 15 days	0.15
Biodegradable within 50 days	0.5

(C) Aerobic biodegradation ability

Division	Indication
Readily biodegradable	R
Inherently biodegradable, but not readily biodegradable	I
Persistent	Р
Not tested for aerobic biodegradability	0

(4) Anaerobic biodegradation ability

Test or	Division	
Non-test	Division	Indication
\bigcirc	Not anaerobically biodegradable	N
U	Anaerobically biodegradable	
	There is no test result, but it will be verified by analogy.	v
х	(e.g: The result of biodegradation prediction program developed by	
^	EPA such as BIOWIN)	
	-	0

Note 1) Name of Specifications

• KS M ISO 11734 [Water quality - Evaluation of the ultimate anaerobic biodegradability of organic compounds in digested sludge method by measurement of the biogas production]

• ECETOC Anaerobic biodegradation test (Technical Report No28, Evaluation of Anaerobic Biodegradation, 1988), or, OECD 311 (ready anaerobic biodegradability : gas production form diluted anaerobic sewage sludge)

Note 2) Explanation of Terms

• BIOWIN[™]: Estimates aerobic and anaerobic biodegradability of organic chemicals using 7 different models; two of these are the original Biodegradation Probability Program (BPP[™]). The seventh and newest model estimates anaerobic biodegradation potential.

Common Criteria, Notice No. 2012-36, the Ministry of Environment

1. Eco-label products must follow the following provisions with regard to the proper treatment of environmental pollution substances, such as air and water wastes and noxious chemical substances emitted in the process of manufacturing or service operation.

A. When first applying for certification, the product manufacturer should observe the environment related laws and agreements pertaining to the region where the production factory or the place of service operation is located for a period of one year prior to the date of application. Any case of violation of the penalty clause will be verified by confirming documents involved during a period of one year to the date of application. Regarding any violation not related to the penalty clause, confirmation will be made on the completion of appropriate measures.

B. A person who has received a certification of eco-labeling shall observe the environment related laws and agreements pertaining to the region where the production factory or the place of service operation is located during the period of certification. However, regarding any violation besides a penalty, confirmation will be made on the completion of appropriate measures.

2. As a general rule, information for consumers shall be indicated on the surface of the product in such a way not to be easily erased. However, in case that indication on the surface of the product is impossible or undesirable, it can be indicated on the appropriate part such as product packaging, product guidebook and user's manual that consumers can recognize. However, the service information should be indicated inside and outside of the place of service operation. In case that indication inside and outside of the place of service operation is impossible or undesirable, it can be indicated on the appropriate part such as an agreement, letter of delivery, letter of guarantee, and PR materials that consumers can recognize.

3. In order to establish fair trade and to protect consumer, the applicant for ecolabel and the holder of eco-label license shall observe the Act on the Fairness of Indication and Advertisement with respect to the environmental aspects of the product.

4. For Various standards referred in the certification criteria by target product, the latest revised edition applies at the date of application, if not specified otherwise.

5. In applying the quality related criteria for each target product, if no standard is available that can be applied as the quality criteria, the president of Korea Environmental Industry & Technology Institute (KEITI) (hereafter referred to as "president of KEITI") may establish and operate the quality criteria for the product involved after review by a competent committee.